
Tuning TCP and NGINX on
EC2

2 | TCP/NGINX Tuning on EC2

Who are we?

Chartbeat measures and monetizes attention on the web. Working with 80% of

the top US news sites and global media sites in 50 countries, Chartbeat brings

together editors and advertisers to identify in real time the active time an

audience consumes articles, videos, paid content, and display advertising.

2 | TCP/NGINX Tuning on EC2

2 | TCP/NGINX Tuning on EC2

● Founded in 2009
● Hosted on AWS , 400-500 servers

depending on time of day
● Around 180k - 220k req/sec
● 6 - 9 million concurrents

chartbeat.com/totaltotal

2 | TCP/NGINX Tuning on EC2

Who am I?

● Sr Web Operations Engineer
● Previously worked at

○ Bitly
○ TheStreet.com
○ Promotions.com

2 | TCP/NGINX Tuning on EC2

Traffic Characteristics

Every 15 seconds

213 byte, request size
43 byte, response size

2 | TCP/NGINX Tuning on EC2

Problem

● Reports of slowness from some customers
● Taking 3 seconds to send data

Default Retransmission Timeout

RFC 1122: Section 4.2.3.1
The following values SHOULD be used to initialize the
 estimation parameters for a new connection:

 (a) RTT = 0 seconds.

 (b) RTO = 3 seconds. (The smoothed variance is to be
 initialized to the value that will result in this RTO).

2 | TCP/NGINX Tuning on EC2

flickr: wallyg

2 | TCP/NGINX Tuning on EC2

flickr: oregondot

2 | TCP/NGINX Tuning on EC2

Now what?

TCPDump + Wireshark confirms retransmissions

2 | TCP/NGINX Tuning on EC2

DON’T GRAPH ALL THE THINGS

● Graph only relevant metrics
○ you’ll end up with a ton of red herrings

2 | TCP/NGINX Tuning on EC2

Sources of info

● ss -s
○ summary of socket statistics
TCP: 10678 (estab 2503, closed 8167, orphaned 0, synrecv 0, timewait 8167/0),
ports 0

● netstat -s
 "tcp_active_connections_openings",

 "tcp_connections_aborted_due_to_timeout",

 "tcp_data_loss_events",

 "tcp_failed_connection_attempts",

 "tcp_other_tcp_timeouts",

 "tcp_passive_connection_openings",

 "tcp_segments_retransmited",

 "tcp_segments_send_out",

 "tcp_syns_to_listen_sockets_dropped",

 "tcp_times_the_listen_queue_of_a_socket_overflowed",

●

2 | TCP/NGINX Tuning on EC2

TCP/IP
Illustrated
Volume 1
Second Ed.

2 | TCP/NGINX Tuning on EC2

Logster + Graphite

https://github.com/etsy/logster

Tails logs, generates metrics and
outputs to Graphite or Ganglia

https://github.com/etsy/logster
https://github.com/etsy/logster

2 | TCP/NGINX Tuning on EC2

FINDINGS

2 | TCP/NGINX Tuning on EC2

Sources of info

● netstat -s
 "tcp_active_connections_openings",

 "tcp_connections_aborted_due_to_timeout",

 "tcp_data_loss_events",

 "tcp_failed_connection_attempts",

 "tcp_other_tcp_timeouts",

 "tcp_passive_connection_openings",

 "tcp_segments_retransmited",

 "tcp_segments_send_out",

 "tcp_syns_to_listen_sockets_dropped",

 "tcp_times_the_listen_queue_of_a_socket_overflowed",

Values > 1, can’t be
good

Confirmed what we
suspected

WHUT

2 | TCP/NGINX Tuning on EC2

2 | TCP/NGINX Tuning on EC2

Systems Performance

Enterprise and the Cloud by Brendan Gregg, pg 492

net.ipv4.tcp_max_syn_backlog

net.core.somaxconn
Nginx: listen backlog=####

2 | TCP/NGINX Tuning on EC2

Insane Defaults

● net.core.netdev_max_backlog = 1000
○ Per CPU backlog?
○ Network Frames

● net.ipv4.tcp_max_syn_backlog = 128
● net.core.somaxconn = 128
● nginx listen backlog = 511 ?!?

○ Silently truncated to somaxconn value

2 | TCP/NGINX Tuning on EC2

New Values

● net.core.netdev_max_backlog = 16384
● net.ipv4.tcp_max_syn_backlog = 65536
● net.core.somaxconn = 16384
● nginx listen backlog = 16384

○ should be <= somaxconn

2 | TCP/NGINX Tuning on EC2

Results

2 | TCP/NGINX Tuning on EC2

Further settings explored

net.ipv4.tcp_slow_start_after_idle
net.ipv4.tcp_max_tw_buckets
net.ipv4.tcp_rmem/wrem
net.ipv4.tcp_fin_timeout
net.ipv4.tcp_mem

2 | TCP/NGINX Tuning on EC2

net.ipv4.tcp_slow_start_after_idle

Set to 0 to ensure connections don’t go back to
default window size after being idle too long.

Example: HTTP KeepAlive

2 | TCP/NGINX Tuning on EC2

net.ipv4.tcp_max_tw_buckets

Max number of sockets in TIME_WAIT. We
actually set this very high, since before we
moved instances behind an ELB it was normal
to have 200k+ sockets in TIME_WAIT state.

Exceeding this leads to sockets being torn
down until under limit

2 | TCP/NGINX Tuning on EC2

net.ipv4.tcp_rmem/wrem

Format: min default max (in bytes)

The kernel will autotune the number of bytes to
use for each socket based on these settings. It
will start at default and work between the
min and max

2 | TCP/NGINX Tuning on EC2

net.ipv4.tcp_fin_timeout

The time a connection should spend in
FIN_WAIT_2 state. Default is 60 seconds,
lowering this will free memory more quickly and
transition the socket to TIME_WAIT.

This will NOT reduce the time a socket is in
TIME_WAIT which is set to 2 * MSL (max
segment lifetime)

2 | TCP/NGINX Tuning on EC2

net.ipv4.tcp_fin_timeout continued...

MSL is hardcoded in the kernel at 60 seconds!

https://github.
com/torvalds/linux/blob/master/include/net/tcp.
h#L115

#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy

TIME-WAIT * state, about 60 seconds */

https://github.com/torvalds/linux/blob/master/include/net/tcp.h#L115
https://github.com/torvalds/linux/blob/master/include/net/tcp.h#L115
https://github.com/torvalds/linux/blob/master/include/net/tcp.h#L115
https://github.com/torvalds/linux/blob/master/include/net/tcp.h#L115

2 | TCP/NGINX Tuning on EC2

net.ipv4.tcp_mem

Format: low pressure max (in pages!)

Below low, Kernel won’t put pressure on
sockets to reduce mem usage. Once pressure
hits, sockets reduce memory until low is hit. If
max hit, no new sockets.

2 | TCP/NGINX Tuning on EC2

2 | TCP/NGINX Tuning on EC2

2 | TCP/NGINX Tuning on EC2

net.ipv4.tcp_tw_recycle (DANGEROUS)

● Clients behind NAT/Stateful FW will get
dropped

● *99.99999999% of time should never be
enabled

* Probably 100% but there may be a valid case out there

2 | TCP/NGINX Tuning on EC2

net.ipv4.tcp_tw_reuse

● Makes a safer attempt at freeing sockets in
TIME_WAIT state.

2 | TCP/NGINX Tuning on EC2

Recycle vs Reuse Deep Dive

http://bit.ly/tcp-time-wait

2 | TCP/NGINX Tuning on EC2

One last thing…

TCP Congestion Window - initcwnd (initial)

Starting in Kernel 2.6.39 , set to 10
Previous default was 3!

http://research.google.com/pubs/pub36640.html

Older Kernel?
$ ip route change default via 192.168.1.1 dev eth0 proto static initcwnd 10

2 | TCP/NGINX Tuning on EC2

NGINX

2 | TCP/NGINX Tuning on EC2

listen statement

● backlog
○ limited by net.core.somaxconn

● defer
○ TCP_DEFER_ACCEPT - Wait till we receive data

packet before passing socket to server. Completing
TCP Handshake won’t trigger an accept()

2 | TCP/NGINX Tuning on EC2

server block

● sendfile
○ Saves context switching from userspace on

read/write.
○ “zero copy” , happens in kernel space

● tcp_nopush
○ TCP_CORK
○ allows application to control building of packet, e.g

pack a packet with full HTTP response
● tcp_nodelay

○ Nagle’s Algorithm
○ Only affects keep-alive connections

● multi_accept
○ Accept all connections on listen queue at once

(careful, can overwhelm workers)

2 | TCP/NGINX Tuning on EC2

Nagle’s Algorithm (tcp_nopush)

Small payload + need for low latency?
Disable

2 | TCP/NGINX Tuning on EC2

HTTP Keep-Alive

● Enabled once behind ELB
● Given small payload and 15 seconds between

data, waste of resources for us to enable
exposed directly to net

2 | TCP/NGINX Tuning on EC2

HTTP Keep-Alive Cont..

● Also enable on upstream proxies
○ Available since 1.1.4
○ *cough* had to upgrade Nginx and Fix memory leak

dealing with libevent and keepalives before we could
get this fully setup

2 | TCP/NGINX Tuning on EC2

ELB

2 | TCP/NGINX Tuning on EC2

Cross-Zone load balancing

Ensures requests to
each ELB in each AZ
go to ALL instances
in ALL AZs

2 | TCP/NGINX Tuning on EC2

Idle Connection Timeout

● Defaults to 60 seconds

● Finally tunable via API.

● Tweak if doing anything long lived , e.g.
Websockets, or ensure you are sending
“pings”

2 | TCP/NGINX Tuning on EC2

Connection draining

“Graceful” removal of node from ELB, will
ensure existing connections can finish instead
of a hard cutoff (old behavior)

2 | TCP/NGINX Tuning on EC2

Metrics to monitor

● SurgeQueueLength (Not Good)
A count of the total number of requests that are
pending submission to a registered instance.

● SpilloverCount (BAD)
A count of the total number of requests that
were rejected due to the queue being full.

2 | TCP/NGINX Tuning on EC2

Conclusions

● The internet is full of lies
● With enough traffic, tweaking system and

application defaults are a necessary
● Find trusted sources (Me? Maybe?) for

settings and test in staging environments
● Measure impact and understand what metrics

may be impacted by your tweaks
● Don’t get lost in all the sysctl settings
● TCP is complicated

2 | TCP/NGINX Tuning on EC2

FIN
FIN_WAIT_1
FIN_WAIT_2
TIME_WAIT

2 | TCP/NGINX Tuning on EC2

Resources and References

https://www.kernel.
org/doc/Documentation/networking/ip-sysctl.txt

man tcp(7)

https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

2 | TCP/NGINX Tuning on EC2

Additional reading

http://engineering.chartbeat.com

Full story about experiences with our
architecture and material discussed in
slides

http://engineering.chartbeat.com
http://engineering.chartbeat.com

2 | TCP/NGINX Tuning on EC2

Questions / Comments?

@Lintzston
justin@chartbeat.com

mailto:justin@chartbeat.com
mailto:justin@chartbeat.com

